Search results for "Symmetric Boundary Element Method"
showing 8 items of 8 documents
Boundary discretization based on the residual energy using the SGBEM
2007
Abstract The paper has as objective the estimation of the error in the structural analysis performed by using the displacement approach of the Symmetric Galerkin Boundary Element Method (SGBEM) and suggests a strategy able to reduce this error through an appropriate change of the boundary discretization. The body, characterized by a domain Ω and a boundary Γ−, is embedded inside a complementary unlimited domain Ω∞⧹Ω bounded by a boundary Γ+. In such new condition it is possible to perform a separate valuation of the strain energies in the two subdomains through the computation of the work, defined generalized, obtained as the product among nodal and weighted quantities on the actual boundar…
Modellazione lineare delle grandezze di contorno nell'analisi per sottostrutture delle piastre inflesse via SBEM
2009
Domain decomposition in the symmetric boundary element analysis
2002
Recent developments in the symmetric boundary element method (SBEM) have shown a clear superiority of this formulation over the collocation method. Its competitiveness has been tested in comparison to the finite element method (FEM) and is manifested in several engineering problems in which internal boundaries are present, i.e. those in which the body shows a jump in the physical characteristics of the material and in which an appropriate study of the response must be used. When we work in the ambit of the SBE formulation, the body is subdivided into macroelements characterized by some relations which link the interface boundary unknowns to the external actions. These relations, valid for e…
On the computational aspects of a symmetric multidomain BEM for elastoplastic analysis
2012
The symmetric boundary element method (SBEM) is applied to the elasto-plastic analysis of bodies subdivided into substructures. This methodology is based on the use of: a multidomain SBEMapproach, for the evaluation of the elastic predictor; a return mapping algorithm based on the extremal paths theory, for the evaluation of inelastic quantities characterizing the plastic behaviour of each substructure; and a transformation of the domain inelastic integrals of each substructure into corresponding boundary integrals. The elastic analysis is performed by using the SBEM displacement approach, which has the advantage of creating system equations that only consist of nodal kinematical unknowns a…
A multidomain approach of the SBEM in the plate bending analysis
2009
The aim of this paper is to apply the multidomain approach of the SBEM to the plate bending analysis. The plate is subdivided into macro-elements connected each other along the interface boundary. Every macro-element is defined by an elastic relation which connects the generalized shear force and moments at the interface to the nodal displacements and rotations of the same boundary and to the loads. This approach allows a considerable reduction of the variables through a condensation process which leaves the interface kinematical unknowns, only. The assembly process may be obtained through the regularity conditions prescribed at the interface.
Elastoplastic analysis by the multidomain Symmetric Boundary Element Method
2009
Body forces and thermoelasticity in the SGBEM
2003
This paper proposes a revisiting of the displacement method performed through a domain substructuring into macro-zones named BelementsThis paper proposes a revisiting of the displacement method performed through a domain substructuring into macro-zones named Belements in the ambit of the Symmetric Galerkin Boundary Element Method. The external actions are the boundary forces and the constraint subsidings, as well as the body forces b and the anelastic strains ϑ . In order better to connect the method to the boundary geometry of each B-element the volume integrals of b and ϑ are transformed into line integrals in the discretized B-elements. The KARNAK sGbem program is utilized for some examp…
Symmetric boundary element method versus finite element method
2002
The paper examines the effectiveness of the symmetric boundary element formulation when the continuum body is subdivided into large elements called macro-elements. The approach proposed combines a strong reduction of variables with an elastic solution close to the real response. Indeed, if the displacement method is used, this approach permits one to determine for every macro-element a relationship connecting the weighted traction vector defined on the sides of the interface boundary with the node displacement vector of the same boundary and with the external action vector. Such a strategy is very similar to that followed through the finite element method, but with the advantages of having …